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ABSTRACT

Recent results from the Apollo Seismic Network suggest that (1)

primitive differentiation occurred in the outer shell of the moon to

a depth of approximately 300 km; and (2) the central region of

the moon is presently molten to a radius of between 200 and 300 km. If

early melting to a depth of 300 to 400 km was a consequence of accre-

tional energy, very short accretion times are required. The best model

for the zone of original differentiation appears to be a crust 40 to

80 km thick, ranging in composition from anorthositic gabbro to gabbro;

overlying an ultramafic cumulate (olivine-pyroxene) about 250 km thick.

The best candidate for the molten core appears to be iron or iron sul-

phide. A new class of seismic signals has recently been identified that

may correspond to shallow moonquakes. These are rare, but much more en-

ergetic than the more numerous, deep moonquakes.
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Introduction

Five seismic stations have been placed on the moon by the astronauts of

Apollo missions 11, 12, 14, 15, and 16. The Apollo 11 station, powered by

solar cells and intended for operation only during the lunar day, failed

after exposure to the first nighttime period. The remaining four stations,

powered by radio isotope thermal generators (RTG), have operated continuously

since their initial activation. These four stations constitute the Apollo

Seismic Network. The locations and installation dates of these stations

are given in Table 1. The network was completed two years ago (as of April,

1974) with the installation of the fourth station in the Descartes region of

the southern highlands during mission 16. It is estimated that the maximum

lifetime of each station will be about ten years, corresponding to the use-

ful lifetime of the RTG power source. Each station contains four seismometers.

Three of these seismometers form a triaxial set (one sensitive to vertical

motion and two sensitive to horizontal motion), with sensitivity to ground

motion sharply peaked at .45 Hz. The fourth seismometer is sensitive to

vertical motion with peak sensitivity at 8 Hz. These instruments can detect

vibrations of the lunar surface as small as 1/2 angstrom at maximum sensitivity.
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Owing to the extreme quiet of the lunar surface, the instruments can be

operated at peak magnification of approximately 20 million. This is two

to three orders of magnitude higher than can normally be used on earth.

All but two of the sixteen separate seismometers are presently operating.

The short-period seismometer at station 12 has failed to operate since

initial activation and the long-period vertical component seismometer at

station 14 became unstable after one year of operation.

We next summarize the major findings from earlier work for the bene-

fit of the reader unfamiliar with these results. A recent review of these

results has been presented by Lammlein et al. (1974).

Brief Review of Previous Results

Prior to the first lunar landings, the seismic experiment team had an-

ticipated that moonquakes, if extant, might originate along the large rill-

like features that criss-cross the lunar surface; or along the fracture sys-

tems associated with the large maria basins. High-frequency signals that

are possibly shallow moonquake have, in fact, been recorded and these are

among the largest of the signals recorded to date. However, these are ex-

tremely rare; 11 such events have been identified over a period

of three years. Much more numerous, but very small in magnitude (maximum

Richter magnitudes of about 2) are moonquakes that occur at great depth.

These are concentrated in a relatively thin zone at depths of between about

600 and 800 km. A third category of moonquakes has been recognized. These

are small events that can be detected at each station at maximum ranges of
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a few tens of km. The frequency of occurrence of these events is closely

correlated with the lunar surface temperature cycle. These are almost

certainly of thermal 'origin. Slumping of material along steep slopes or

dislocations along fracture or bedding planes in material very near the

surface in response to thermal stresses, have been suggested as possible

source mechanisms (Duennebier and Sutton, 1974). These will not be dis-

cussed further here, except to remark that the mechanism leading to ther-

mal moonquakes may represent an important erosional process on the lunar

surface. The total annual energy release from moonquakes is estimated to

be less than 1015 ergs per year. This is about 9 orders of magnitude lower

than that of the earth. If the sensitivities of the lunar seismographs

were limited to the levels of their terrestrial counterparts, we would

have recorded no moonquakes at all. Our conclusion would have been that

the moon is totally devoid of internal activity leading to quakes. Signals

are recorded from several hundred meteoroid impacts per year at each sta-

tion. By using the impacts from the third stages of the Saturn boosters

as calibrations, and a statistical method developed by James Dorman (de-

scribed in Latham et al., 1973) the present meteoroid flux in the vicinity

of the moon has been estimated to be

log N = -1.62 - 1.16 log M

where N is the cumulative number of meteoroids of mass m (in grams) and

greater, which strike the moon per year per km2 . This flux estimate is

one to three orders of magnitude lower than those derived from earlier

earth-based measurements. However, it is in agreement with estimates
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derived from the distribution of crater sizes on the youngest lunar maria,

assuming a plausible decrease in meteoroid flux between the time of maria

formation and the present. Indeed, Wetherill (1971) has pointed out that

previous earth-based flux estimates were too high by a factor of about 35

to be consistent with the crater-size distributions observed on the maria.

We estimate that a meteoroid of mass 7 to 10 kgm can be detected by the

Apollo seismic network from any point on the moon. Thus, the moon, when

attached to a seismometer, has proven to be an unexpectedly good "sounding

board" for the detection of meteoroid impacts. This results from a combina-

tion of two factors: the extremely high instrument sensitivities possible

on the lunar surface and the unusually high efficiency of seismic wave prop-

agation throughout most of the lunar interior. The major weakness in the

method thus far, is the availability of only one calibration point (SIVB

impact energy). Obviously, a larger number of man-made impacts covering

a wide range of impact energies would be highly desirable. Gault (personal

communication) has pointed out that we may need to increase our flux esti-

mate by a factor of 2 to correct for the probability of non-normal angles

of impact. It should also be noted that attempts to use near-range seismic

sources (thumper, etc.) as calibrations for meteoroid impact signals re-

corded by the SPZ component, lead to higher meteoroid flux estimates

(Duennebier and Sutton, 1974). The discrepancy between these two methods

remains to be resolved.

Lunar seismograms differ markedly from typical earth recordings. The

most striking feature of lunar signals is their long duration. Examples are

shown in figure 1. Impact generated lunar signals have emergent beginnings,
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increase gradually to a maximum, and then slowly decny. Following Ithe i.rt

one or two cycles of the P wave, ground motion is very complex with little

-r no correlation between any two components. The onset of the shear wave

-from near impacts (ranges less than 1000 km) cannot be identified with cer-

-tainty. Coherent surface wave trains displaying dispersion have not been

recognized in any recordings to date, although scattered surface waves un-

doubtedly contribute to the signals. The direction of propagation can rare-

ly be determined from the particle motion at a single station. Thus, many

analysis techniques found useful in terrestrial seismology cannot be applied

to lunar signals. Signals from the deep moonquakes are generally less com-

plex in the early part of the wave train than those from impacts. The

largest amplitudes are clearly associated with the shear waves; however,

the exact onset of the shear waves is difficult to identify. These unusual

characteristics of lunar signals appear to be accounted for by assuming a

high degree of heterogeneity, resulting in intensive scattering, and very

low absorption of seismic wave energy in a thin surficial zone, referred to

as the scattering zone. Nakamura (included in Latham et al., 1970) has

successfully described the envelope characteristics of lunar signals by us-

ing diffusion theory. His analysis shows that most of the scattering occurs

in the outer few hundred meters of the moon in which the Q of the medium must

range between about 3,000 and 5,000. In fact, the extremely low absorption

of seismic waves in this material is the dominant factor leading to the

characteristics of lunar seismograms described above. Many terrestrial

seismograms would possess the same characteristics as those of lunar seis-

mograms if the absorption of seismic energy wcre reduced to lunar values.
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There is a growing body of laboratory data supporting our earlier contention

that this marked contrast in absorption can be ascribed to the nearly com-

plete absence of volatiles, principally water, in the outer shell of the

moon.

A seismic velocity model for the upper 150 km of the moon has previously

been defined (Latham et al., 1973; Toksoz et al., 1972) on the basis of ob-

served travel times and amplitudes of body waves from nine impacts of SIVB

and LM space vehicles combined with data from laboratory measurements on

returned lunar samples. Seismic signals from these impacts were recorded

at ranges from 9 km to 1750 km.A first-order model for the variation in

the velocity of compressional waves with depth consistent with the

travel times of seismic waves from these man-made impacts and a mete-

oroid impact that occurred within the array, is shown in figure 2. The

most important feature of this model is the abrupt increase in velocity

in the depth range between 50 and 55 km. By analogy with the earth

we refer to the zone above this discontinuity as the crust and to the

zone below as the mantle. Near ths surface, the velocity increases

rapidly from a value of about 100 m/sec measured in the regolith,

reaching a value of between 6.3 and 7.0 km/sec at the base of the

crust. The rapid increase in velocity near the surface can be explained

by the progressive compaction of materials so thoroughly fragmented that

the velocity of propagation through it is determined primarily by its mechan-

ical state rather than by its chemical composition. Velocities in the range

from 6 to 7 km/sec are appropriate for, but not restricted to, the rock

types found to predominate in the lunar highlands (anorthositic gabbros

and aluminous basalts). At the mantle boundary, the compressional wave

-_lJcity increases to about 8.1 km/sec: a value appropriate for



-7-

rocks of olivine-pyroxene composition. As shown by Kovach and Watkins (1973),

the velocity variation in the outer crust may be stepwise in some areas where

flows (ash or lava) have escaped complete obliteration, but the smooth vari-

ation shown in figure 2 appears to be a good approximation to the stepwise

increase they infer for the region of the Apollo 17 landing site.

It was found soon after the installation of station 12 that moonquake

signals could be grouped into sets: members of each set having waveforms

which match one another in detail. Moonquakes in each group occur at regu-

lar intervals, normally once per month, and at specific times during the

lunar orbit. In some cases, as many as three or four moonquakes of a given

set will occur during a monthly cycle, but such multiple events occur over

a relatively short interval of a few days or less. The repetitious charac-

ter of these events strongly supports the hypothesis that they are moonquakes;

each group of matching signals corresponding to an active zone or focus with-

in the moon at which the repeating moonquakes originate. Forty-one sets of

signals, corresponding to forty-one active foci have been identified to date.

Since the total number of moonquakes in the matching groups represent only

about 10 percent of the several thousand moonquakes recorded to date, it is

quite probable that many other active foci exist. However, the signals re-

corded from them are too small to permit detailed analysis of their wave forms.

Two tidal periodicities have been recognized in the moonquake activity

patterns (variations in times-of-occurrence and amplitudes): 13.6 days and

206 days. The shorter period variation corresponds to the nodical or dra-

conic month. The longer period is introduced by solar purturbation of the

lunar orbit which results in a cyclical variation of the earth-moon separation
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at times of perigee. A third periodicity, corresponding to the successive

.synchronizations of the anomalistic and nodical months, with a period of

about six years, appears to be present. However, the sample length is not

yet long enough to confirm this. It is evident that tides play a dominant

role'in the generation of moonquakes. However, with very few possible ex-

ceptions, the polarities of seismic signals from a given source are iden-

tical. This implies that the dislocation is progressive and not periodi-

cally reversed. Progressive dislocation suggests secular accumulations of

strain peri6dically released by moonquakes. Weak convection within the

deep lunar interior or, relaxation of tidal deformation as the moop re-

cedes from the earth have been suggested as possible sources of secular

accumulation of strain.

Using the velocity model described above, extrapolated to the depths of

moonquakes, 27 of the active foci have been located. The epicentral loca-

tions are shown in figure 3. In nine cases, the depth of focus was assumed

in the calculation. The moonquake foci are concentrated in two narrow belts.

Both belts are 100 to 300 km wide, about 2,000 km long, and 600 to 800 km

deep (Earlier estimates placed the depth of the moonquake zone at between

800 and 1000 km.). Whether the apparent alignment into belts is real or

a mirage that will disappear as more epicenters are located is not known.

However, the distribution is certainly not random. The epicenters lie ap-

proximately along arcs of great circles that intersect at an angle of about 80

degrees. This pattern cannot be explained as a natural consequence of the

distribution of seismic stations, nor do we know of any tidal stress com-

ponent that would lead to such a pattern. In addition, no systematics in

the relative times of occurrence of the moonquakes within a given belt have
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been discerned, except that peaks in the combined activity detected from all

foci occur at average intervals of 13.6 days and are approximately in phase

-at all- stations.

Only one moonquake epicenter has been located on the far side of the

moon. For signals from this source, it was noticed that shear waves were

missing in the seismogram recorded at the most distant station for which

the signal could be detected (station 14). Since shear waves from moon-

quakes are namally prominent at station 14, this observation remained a

mystery until the phenomenon of missing, or greatly delayed, sheir waves

was observed in the records from a distant impact. Although other inter-

pretations are possible, Nakamura et al. (1973) found that these observa-

tions could be explained by assuming that partial melting begins in the

present day moon at a depth of about 1000 km. (This boundary must be

moved upward to a depth of about 800 km according to the more recent re-

sults presented here). Following the same line of reasoning, significant

melting cannot be present in the crust and mantle at depths shallower

than the moonquake zone, since high frequency shear waves are prominent

in the seismograms from all near-side moonquakes. Since little or no

seismic activity has been detected above the moonquake zone and sub-solidus

temperatures are inferred, we refer to this dynamically inactive outer

shell as the lithosphere, and to the "weaker" central zone, in which

partial melting is inferred, as the asthenosphere.
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Recent Results

A. High Frequency TeleseismicEvents

A set of seismic signals with unusual characteristics has recently

been identified (Nakamura et al., 1974). They are distinguished from all

other signals recorded at comparable ranges (greater than 1000 km) by their

high frequency content. Only 11 signals of this type, designated high-

frequency teleseismic (HFT) signals, have been identified in the three-year

period for which data are available; but some of these are among the largest

signals detected. Recordings for one of these events are shown in figure

4, along with representative signals from a moonquake and a meteoroid im-

pact. The relatively high frequency content of the HFT signal'can be

seen in this figure by comparing the amplitudes recorded by the long-

period seismometers (LPX,Y,Z) with those recorded by the short-period

seismometers (SPZ). The relatively large amplitude of the SPZ record

for the HFT event, indicates that most of the signal energy is at fre-

quencies above 1 Hz; whereas, frequencies below 1 Hz are dominant in

signals for distant moonquakes and impacts. This comparison is made

for a larger number of events in figure 5, where the ratio of the max-

imum signal amplitudes recorded by the SPZ and LPY (one of the long-

period horizontal components) seismometers is plotted versus the time

interval between the P wave and S wave arrivals for each signal. This

time interval is a function of distance between the source and the seis-

mic station; increasing time interval corresponding to increasing dis-

tance. The distinctive character of the HFT signals is evident in this

plot.
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The beginnings of the P wave and S wave trains are much more impul-

sive for HFT signals than those of typical meteoroid impact signals,sug-

gesting that scattering near the source is much less for the HFT events

than for normal surface sources. On the other hand, the predominance of

shear waves in the signals from the most distant HFT events requires

that the source be shallower than 300 km (Nakamura et al., 1974).

Several source mechanisms for these unusual signals are suggested:

(1) either they are generated by meteoroids that penetrate through the

scattering zone into more competent material below (200 to 300 meters)

or impacts in areas where unusually competent and structurally- omogeneous

material lies close to the surface; or (2) they are shallow moonquakes.

The latter interpretation is favored. It is difficult to conceive of

any process which would preserve isolated patches of the lunar surface

relatively undisturbed by meteoroid impacts; and, if such regions do

exist, gradational cases would be expected, resulting in a broad spec-

trum of signal characteristics instead of the sharp division between

signal classes observed. On the other hand, the existence of some shal-

low moonquake activity in a cooling planet would be expected.

B. Structure and State of the Deep Lunar Interior

Information on the structure and state of the deep lunar interior

is derived principally by analysis of seismic signals from distant im-

pacts and moonquakes. As noted above, meteoroid impact signals are so

emergent that it is rarely possible to pick the onset of the P wave with

certainty, and the onset of shear waves can be separated out from the
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conlpressional wave train only in the signals from distant impacts.

S.I[1gnal frfm four of the Iarge Impacts nand two of the HFT events

have been selected as su:ftnble for thet presecit analysiJn. 'The trlvel-

time curves for these events, as given by Nakamura et al. (1974), are

shown in figure 6. These data can be inverted by the Wiechert-Herglotz

method to give seismic velocities as a function of depth assuming that

velocity gradients are not so large as to invalidate the method. How-

ever, several points can be made by inspection of these curves without

further analysis. Firstly, we note that the curve for shear (S) waves

departs markedly from the curve for compressional (P) waves at a range

of about 850 (2600 km) corresponding to maximum depths for the shear-

wave ray path of about 300 to 400 km. The velocity of shear waves must

begin to decrease sharply (i.e., Poisson's ratio begins to increase) in

this depth range. Secondly, the P-wave travel time for the most distant

point is delayed by about 120 sec from the value expected by smooth ex-

trapolation of the curve. This indicates that the velocity of compres-

sional waves decreases abruptly at depths of between 1380 and 1570 km.

Below the zone of abrupt shear-wave decrease, the Wiechert-Herglotz

method tannot be applied for shear waves with confidence, and signals

from moonquakes that originate beneath this zone must be used. Signals

from one of the moonquakes used in this analysis are shown in figure 7.

Combining the travel time data from deep moonquakes with the data of figure 6,

the model shown schematically in figure 8 has been derived. For purposes

of discussion, it is convenient to divide the lunar interior into five

major zones:
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1. Zone 1 - the crust. A layer approximately 55 km thick in the

region of stations 12 and 14. If the crust is a global feature, as sug-

gested by several lines of evidence (Lammlein et al., 1974), it is prob-

ably quite variable in thickness with thickness of the backside crust

substantially greater than that of the nearside (Kaula, 1973). The

crustal velocities are appropriate for the plagioclase-rich materials

inferred from sample analysis; possibly grading from anorthositic mater-

ial at the top to more gabbroic material at depth.

2. Zone 2- the upper mantle. A zone approximately 250 km

thick, with a compressional wave velocity of about 8.1 km/sec at the

top, decreasing to about 7.8 km/sec at the bottom. Possible composi-

tions of this zone can be inferred from the velocities and densities

corresponding to the model of figure 8. Based upon geochemical consi-

(dt.rlionoi: (I)Ilia ait RInw()d, 1973), olivine and pyroxene are the most

probable constituents of the rocks ol (l I l pilr ,I ,: i l. ICC v,-, ,l volye,-

ity versus density for these minerals are given in figure 9 along with

the values derived from our preliminary model assuming a uniform com-

position for the upper mantle, i.e., the velocity decrease with depth

in the upper mantle is due to increasing temperature with depth. The

experimental values for the upper mantle thus derived are in good agree-

ment with the olivine data (80-85% Forsterite). The calculated points

are shifted slightly to the left if an iron-sulphide core (zone 5) is

assumed. The assumption of constant composition requires a temperature

gradient of 4 to 5oC/km for the upper mantle. Alternatively, the travel

time data can be satisfied by assuming a variation from magnesium olivine
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at the top to more pyroxenitic material below, and reduction of the tem-

perature gradient to between 2 and 30C/km. Walker et al. (1973) have

pointed out that a mafic cumulate of thickness corresponding to that

inferred here for the upper mantle .(about 250 km) might be expected if

a.plagioclase-rich crust 50 to 60 km thick is present.

3. Zone 3 - the middle mantle. This zone,extending from about 300

to 800 km, is characterized chiefly by the reduced velocity of shear waves

(3.6 - 4.0 km/sec) within it. It is likely that the compressional wave

velocity is also decreased slightly in this layer, but this cannot be

resolved with the available data. Thus, the material of zone 3 must have

a high Poisson's ratio (0.34 to 0.35) compared to that of the material

above in which the Poisson's ratio is approximately 0.25. One possible

interpretation is that this zone represents primitive lunar material be-

low the zone of initial melting that produced zones 1 and 2. Mare basalts

may have been produced by partial melting within zone 3, 3.2 to 3.8 bil-

lion years ago in accordance with the proposals of Duba and Ringwood (1973)

and others. Moonquakes are concentrated within a relatively thin zone

at the base of zone 3, in a depth range of from 600 to 800 km. Because

high frequency shear waves are recorded from all of these sources (ex-

cept the far-side focus), we can say immediately that widespread melting

in zones 1, 2, and 3 is not possible,i.e., temperatures in these zones

must be subsolidus. In addition, there is little or no scattering of

seismic waves in zone 3. Thus, if this represents an accumulation of
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primitive materials,either individual blocks are small compared to a

wavelength (less than about 1 km in dimension), or the elastic proper-

ties of the individual blocks do not vary appreciably, or any inhomo-

geneities have been removed by subsequent melting.

There is some evidence that the transition from zones 2 to 3 may

be relatively sharp., A prominent phase, designated R in figure 10,

has been identified in the wavetrains of the largest moonquake signals.

The relative arrival times for this phase can be explained by assuming

that the phase is generated by conversion from S to P at an interface

located at a depth of about 300 km, the approximate depth for the boundary

between zones 2 and 3 derived from shear-wave travel-time data. Similar

mode conversions have been tentatively identified in records from deep

earthquakes (Jordan, 1974).

4. Zone 4 - the lower mantle. This zone is characterized chiefly

by the absence of identifiable shear waves for events in the distance

range for which shear waves would enter this zone. This can be ascribed

to (1) a sharp decrease in shear wave velocity at the top of the zone,

leading to a shadow zone for shear waves; or (2) high attentuation of

shear waves within this zone. The latter interpretation is favored for

the following reasons: Firstly, we must explain the concentration of

moonquake activity, closely correlated with lunar tides, immediately

above this zone. Calculation of tidal energy density as a function of

depth shows that a sharp maximum is introduced in the depth range of

moonquakes if a zone of much "weaker" material (zone 4) is introduced

below (Lammlein and Latham, 1974). Secondly, the velocity of P-waves
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cannot decrease more than 0.2 to 0.3 km/sec within this zone, A greater

decrease in compressional wave velocity would be expected to accompany

the sharp decrease in the shear wave velocity required to produce an

optical shadow zone. To explain these observations, Nakamura et al.

(1973) have argued that partial melting is probable in the lunar mantle.

If so, a temperature of approximately 15000C is inferred for the top of

zone 4, assuming a mafic composition.

5. Zone 5 - the "core". This zone is characterized by a sharp

decrease in the velocity of P waves beginning at a depth of from 1380

to 1570 km. The inferred P-wave velocity for this zone is about 5 km/

sec, suggesting that the material of this zone is completely molten.

Unless the material of zone 5 is more dense than that of zone 4, convec-

tive unstability between zones 4 and 5 would result. It is suggested

that zone 5 represents a molten core of iron sulphide in accordance

with the models earlier suggested on geochemical grounds by Brett (1972)

and Duba and Ringwood (1973). If the composition of the core is iron

sulphide, it represents less than 1% of the total mass of the moon and

falls easily within moment-of-inertia constraints. However, this in-

terpretation must be regarded as quite tentative pending the acquisition

of more seismic data pertinent to the properties of this zone.
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Concluding Remarks

1. An iron sulphide core of radius 200 to 300 km, as suggested by

present seismic data, may have been the source of an early dipole field

that magnetized lunar surface rocks.

2. If accretional energy were responsible for melting the outer

shell of the moon to a depth of about 300 to 350 km to produce the crust

and upper mantle, very short accretion times are required; probably less

than 10,000 years (Duba and Ringwood, 1973).

3. The low level of lunar seismicity and its concentration at great

depth compared to the earth, now appear to be explained by the differences

in thickness of the lithospheric shells and internal thermal enery of

these two planets. The lunar lithosphere is simply too thick (about 800 km)

to be disrupted by the relatively weak convective motion that might be in-

duced by temperature gradients below. In the absence of this source of

seismic activity, i.e., collisions between lithospheric plates, disloca-

tions induced by tidal deformation of the moon is the dominant mechanism

for generation of quakes. Assuming that the moon is cooling (contracting)

slightly at present, as suggested by the thermal models of Toksoz and Solomon

(1973), the accumulation of compressional stress in the lithosphere would

be expected to result in moonquakes at shallow depth. The few, relatively

energetic evats of unusually high frequency (HFT signals) that have been

detected, may be explained in this way.
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Table 1. Locations and Installation Dates of the Stations of the
Apollo Seismic Network

Station Date of Location
Installation Lat. Long.

12 Nov. 19, 1969 3.040S 23.420W

14 Feb. 5, 1971 3.650 S 17.480W

15 July 31, 1971 26.080N 3.660 E

16 April 21, 1972 8.970 S 15.51PE



Figure Captions

Fig. 1. Compressed t lme-scAJ e records of LP con' pomlIetn 1or two ii um:aI.

seismic events recorded at four seismic stations; X and Y reter to

the horizontal component seismometers; Z refers to the vertical com-

ponent seismometers. Each successive trace deflection of a LP com-

pressed time scale record represents the sum of the absolute values

of the differences between 40 successive data samples during consecu-

tive, nonoverlapping 6-s time intervals. Successive deflections are

plotted on opposite sides of the zero base line. The relative ampli-

tudes of the signals are indicated by the brackets following each

record. Tick marks are 10 min apart, and hours are labeled. The

category A1 8 moonquake zone is located at the eastern border of Mare

Serenitatis. For category A moonquakes, the direct shear wave S is

prominent on seismograms from the horizontal seismometers. The direct

compressional wave P is observed on seismograms of the largest cate-

gory A moonquakes. The category C meteoroid impacted roughly 500 km

north of station 15. The onsets of the direct compressional and

shear waves can rarely be identified on LP seismograms of category C

events.

Fig. 2. Compressional wave velocity model based on seismic data from

nine man-made impacts and one near meteoroid impact.

Fig. 3. Map of the near side of the moon locating the Apollo 12, 14, 15,

and 16 seismic stations (Table 1) and the category A moonquake epicen-

ters. Solid circles indicate the foci for which the depth can be de-

termined. Open circles correspond to cases in which data are not suf-

ficient for determination of depth. In these cases, depth of 800 km



W11H 1I-lH1tlll1'd Io loonilo ti ' pt'C lito i1. Noto tI.h1t epIce011I..tri I anud 0,

and 18 and 32 are so closely spaced that their Heparatlon CIIIIIt b

distinguished at the scale plotted. One focus occurs on the far

side of the Moon.

Fig. 4. A seismogram of a high frequency teleseismic (HFT) event de-

tected on March 13, 1973 (center) compared with those of a moonquake

detected on June 5, 1973 (left: category Al) and a meteoroid impact

detected on May 13, 1972 (right). All of these seismograms were re-

corded at the Apollo 16 station. LPX, LPY, and LPZ stand for three

orthogonal components of a long period instrument peaked at about

0.45 Hz, and SPZ stands for a short period vertical component peaked

at 8 Hz. Note the relatively impulsive beginning of P- and S-wave

arrivals of the HFT event, similar to those of the moonquake, and

the large SPZ amplitude of the HFT event.

Fig. 5. SPZ/LPY amplitude ratio vs. S-P time interval for the HFT events

and selected other events recorded by the Apollo 14 station. A large

amplitude ratio means a greater high frequency content of a signal.

Increasing S-P time corresponds to increasing distance from the sta-

tion.

Fig. 6. Travel-time data for compressional (P) and shear (S) waves re-

corded from 'four distant impacts and two HFT events.

Fig. 7. Four-station expanded time scale play-outs of a category Al8 moon-

quake detected at 22:53 hours on January 5, 1973. X and Y refer

to LP horizontal component seismometers; Z to the LP vertical com-

ponent seismometers. Tick marks are 1 min apart. These signals are



typical of moonquakes recorded at each of the stationts. The direct

shear wave S is prominent on the horizontal comolOueit s.I 4jcl0lmogrmlJ at

all of the stations. The direct compressional wave P is also observed

at stations 14, 15, and 16.

Fig. 8. Pictorial representation (drawn approximately to scale) of the

internal structure of the moon, as described in the text. X marks

indicate the zone of deep moonquakes.

Fig. 9. Density versus velocity (corrected to standard temperature and

pressure) calculated from the seismic data of figure 6 for the upper

mantle (zone 2) of the moon. Compressional and shear wave data for

the olivine (Fo - Fa) series (Chung, 1971) and the orthopyroxene

(En - Fs) series (Chung, personal communication, 1974), are shown

for comparison. The calculations permit variations in the various

latice dynamical parameters over ranges approximate for rocks of

mafic composition. Calculations have been made for two cases:

the cross hatched block corresponds to the assumption that the com-

position of the upper mantle is uniform throughout, i.e., that the

effects of temperature and pressure balance to give the experimentally

determined velocity-depth functions. This requires a velocity gradient

of 4 to 50C/kun in the upper mantle. The open block below shows the

change introduced by decreasing the temperature gradient to between

2 and 30C/km. For this case, the intrinsic velocity and density

must decrease slightly with depth. From this comparison, a composi-

tion close to the magnesian end of the olivine series (80% forsterite)

is suggested for the upper mantle. For both cases described above,

the effect of including an iron core (zone 5) of density 7.5 gm/cc

and a maximum radius of 360 km is also shown.



Fig. 10. Seismograms from the long-period vertical component for two

moonquakes, showing a phase (R) that may correspond to conversion

from shear wave (S) energy to compressional wave (P) energy at an

interface at a depth of about 300 lin (the boundary between zones 2

and 3?).
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Fig. 6
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